(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_20 (Sun Microsystems Inc.) Main-Class: IntRTA
public class IntRTA {
// only wrap a primitive int
private int val;

// count up to the value
// in "limit"
public static void count(
IntRTA orig, IntRTA limit) {

if (orig == null
|| limit == null) {
return;
}

// introduce sharing
IntRTA copy = orig;

while (orig.val < limit.val) {
copy.val++;
}
}

public static void main(String[] args) {
Random.args = args;
IntRTA x = new IntRTA();
x.val = Random.random();
IntRTA y = new IntRTA();
y.val = Random.random();
count(x, y);
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
IntRTA.main([Ljava/lang/String;)V: Graph of 168 nodes with 0 SCCs.

IntRTA.count(LIntRTA;LIntRTA;)V: Graph of 24 nodes with 1 SCC.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 14 rules for P and 2 rules for R.


Combined rules. Obtained 1 rules for P and 0 rules for R.


Filtered ground terms:


880_0_count_FieldAccess(x1, x2, x3, x4, x5) → 880_0_count_FieldAccess(x2, x3, x4, x5)
IntRTA(x1, x2) → IntRTA(x2)
Cond_880_0_count_FieldAccess(x1, x2, x3, x4, x5, x6) → Cond_880_0_count_FieldAccess(x1, x3, x4, x5, x6)

Filtered duplicate args:


880_0_count_FieldAccess(x1, x2, x3, x4) → 880_0_count_FieldAccess(x2, x4)
Cond_880_0_count_FieldAccess(x1, x2, x3, x4, x5) → Cond_880_0_count_FieldAccess(x1, x3, x5)

Combined rules. Obtained 1 rules for P and 0 rules for R.


Finished conversion. Obtained 1 rules for P and 0 rules for R. System has predefined symbols.


(4) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0]))) → COND_880_0_COUNT_FIELDACCESS(x1[0] > x0[0] && x0[0] >= 0, java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0])))
(1): COND_880_0_COUNT_FIELDACCESS(TRUE, java.lang.Object(IntRTA(x1[1])), java.lang.Object(IntRTA(x0[1]))) → 880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1[1])), java.lang.Object(IntRTA(x0[1] + 1)))

(0) -> (1), if ((x1[0] > x0[0] && x0[0] >= 0* TRUE)∧(java.lang.Object(IntRTA(x1[0])) →* java.lang.Object(IntRTA(x1[1])))∧(java.lang.Object(IntRTA(x0[0])) →* java.lang.Object(IntRTA(x0[1]))))


(1) -> (0), if ((java.lang.Object(IntRTA(x1[1])) →* java.lang.Object(IntRTA(x1[0])))∧(java.lang.Object(IntRTA(x0[1] + 1)) →* java.lang.Object(IntRTA(x0[0]))))



The set Q is empty.

(5) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1)), java.lang.Object(IntRTA(x0))) → COND_880_0_COUNT_FIELDACCESS(&&(>(x1, x0), >=(x0, 0)), java.lang.Object(IntRTA(x1)), java.lang.Object(IntRTA(x0))) the following chains were created:
  • We consider the chain 880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0]))) → COND_880_0_COUNT_FIELDACCESS(&&(>(x1[0], x0[0]), >=(x0[0], 0)), java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0]))), COND_880_0_COUNT_FIELDACCESS(TRUE, java.lang.Object(IntRTA(x1[1])), java.lang.Object(IntRTA(x0[1]))) → 880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1[1])), java.lang.Object(IntRTA(+(x0[1], 1)))) which results in the following constraint:

    (1)    (&&(>(x1[0], x0[0]), >=(x0[0], 0))=TRUEjava.lang.Object(IntRTA(x1[0]))=java.lang.Object(IntRTA(x1[1]))∧java.lang.Object(IntRTA(x0[0]))=java.lang.Object(IntRTA(x0[1])) ⇒ 880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0])))≥NonInfC∧880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0])))≥COND_880_0_COUNT_FIELDACCESS(&&(>(x1[0], x0[0]), >=(x0[0], 0)), java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0])))∧(UIncreasing(COND_880_0_COUNT_FIELDACCESS(&&(>(x1[0], x0[0]), >=(x0[0], 0)), java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0])))), ≥))



    We simplified constraint (1) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x1[0], x0[0])=TRUE>=(x0[0], 0)=TRUE880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0])))≥NonInfC∧880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0])))≥COND_880_0_COUNT_FIELDACCESS(&&(>(x1[0], x0[0]), >=(x0[0], 0)), java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0])))∧(UIncreasing(COND_880_0_COUNT_FIELDACCESS(&&(>(x1[0], x0[0]), >=(x0[0], 0)), java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0])))), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_880_0_COUNT_FIELDACCESS(&&(>(x1[0], x0[0]), >=(x0[0], 0)), java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0])))), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [(-1)bni_10]x0[0] + [(2)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_880_0_COUNT_FIELDACCESS(&&(>(x1[0], x0[0]), >=(x0[0], 0)), java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0])))), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [(-1)bni_10]x0[0] + [(2)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_880_0_COUNT_FIELDACCESS(&&(>(x1[0], x0[0]), >=(x0[0], 0)), java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0])))), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [(-1)bni_10]x0[0] + [(2)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_880_0_COUNT_FIELDACCESS(&&(>(x1[0], x0[0]), >=(x0[0], 0)), java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0])))), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] + [(2)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)







For Pair COND_880_0_COUNT_FIELDACCESS(TRUE, java.lang.Object(IntRTA(x1)), java.lang.Object(IntRTA(x0))) → 880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1)), java.lang.Object(IntRTA(+(x0, 1)))) the following chains were created:
  • We consider the chain COND_880_0_COUNT_FIELDACCESS(TRUE, java.lang.Object(IntRTA(x1[1])), java.lang.Object(IntRTA(x0[1]))) → 880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1[1])), java.lang.Object(IntRTA(+(x0[1], 1)))) which results in the following constraint:

    (7)    (COND_880_0_COUNT_FIELDACCESS(TRUE, java.lang.Object(IntRTA(x1[1])), java.lang.Object(IntRTA(x0[1])))≥NonInfC∧COND_880_0_COUNT_FIELDACCESS(TRUE, java.lang.Object(IntRTA(x1[1])), java.lang.Object(IntRTA(x0[1])))≥880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1[1])), java.lang.Object(IntRTA(+(x0[1], 1))))∧(UIncreasing(880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1[1])), java.lang.Object(IntRTA(+(x0[1], 1))))), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ((UIncreasing(880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1[1])), java.lang.Object(IntRTA(+(x0[1], 1))))), ≥)∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ((UIncreasing(880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1[1])), java.lang.Object(IntRTA(+(x0[1], 1))))), ≥)∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ((UIncreasing(880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1[1])), java.lang.Object(IntRTA(+(x0[1], 1))))), ≥)∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (11)    ((UIncreasing(880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1[1])), java.lang.Object(IntRTA(+(x0[1], 1))))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_13] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1)), java.lang.Object(IntRTA(x0))) → COND_880_0_COUNT_FIELDACCESS(&&(>(x1, x0), >=(x0, 0)), java.lang.Object(IntRTA(x1)), java.lang.Object(IntRTA(x0)))
    • (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_880_0_COUNT_FIELDACCESS(&&(>(x1[0], x0[0]), >=(x0[0], 0)), java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0])))), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] + [(2)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)

  • COND_880_0_COUNT_FIELDACCESS(TRUE, java.lang.Object(IntRTA(x1)), java.lang.Object(IntRTA(x0))) → 880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1)), java.lang.Object(IntRTA(+(x0, 1))))
    • ((UIncreasing(880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1[1])), java.lang.Object(IntRTA(+(x0[1], 1))))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_13] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(880_0_COUNT_FIELDACCESS(x1, x2)) = [-1] + [-1]x2 + [2]x1   
POL(java.lang.Object(x1)) = x1   
POL(IntRTA(x1)) = x1   
POL(COND_880_0_COUNT_FIELDACCESS(x1, x2, x3)) = [-1] + [-1]x3 + [2]x2   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(>=(x1, x2)) = [-1]   
POL(0) = 0   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   

The following pairs are in P>:

COND_880_0_COUNT_FIELDACCESS(TRUE, java.lang.Object(IntRTA(x1[1])), java.lang.Object(IntRTA(x0[1]))) → 880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1[1])), java.lang.Object(IntRTA(+(x0[1], 1))))

The following pairs are in Pbound:

880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0]))) → COND_880_0_COUNT_FIELDACCESS(&&(>(x1[0], x0[0]), >=(x0[0], 0)), java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0])))

The following pairs are in P:

880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0]))) → COND_880_0_COUNT_FIELDACCESS(&&(>(x1[0], x0[0]), >=(x0[0], 0)), java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0])))

There are no usable rules.

(6) Complex Obligation (AND)

(7) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0]))) → COND_880_0_COUNT_FIELDACCESS(x1[0] > x0[0] && x0[0] >= 0, java.lang.Object(IntRTA(x1[0])), java.lang.Object(IntRTA(x0[0])))


The set Q is empty.

(8) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(9) TRUE

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_880_0_COUNT_FIELDACCESS(TRUE, java.lang.Object(IntRTA(x1[1])), java.lang.Object(IntRTA(x0[1]))) → 880_0_COUNT_FIELDACCESS(java.lang.Object(IntRTA(x1[1])), java.lang.Object(IntRTA(x0[1] + 1)))


The set Q is empty.

(11) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(12) TRUE